COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Occipital proton magnetic resonance spectroscopy (1H-MRS) reveals normal metabolite concentrations in retinal visual field defects.

BACKGROUND: Progressive visual field defects, such as age-related macular degeneration and glaucoma, prevent normal stimulation of visual cortex. We investigated whether in the case of visual field defects, concentrations of metabolites such as N-acetylaspartate (NAA), a marker for degenerative processes, are reduced in the occipital brain region.

METHODOLOGY/PRINCIPAL FINDINGS: Participants known with glaucoma, age-related macular degeneration (the two leading causes of visual impairment in the developed world), and controls were examined by proton MR spectroscopic ((1)H-MRS) imaging. Absolute NAA, Creatine and Choline concentrations were derived from a single-voxel in the occipital region of each brain hemisphere. No significant differences in metabolites concentrations were found between the three groups.

CONCLUSIONS/SIGNIFICANCE: We conclude that progressive retinal visual field defects do not affect metabolite concentration in visual brain areas suggesting that there is no ongoing occipital degeneration. We discuss the possibility that metabolite change is too slow to be detectable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app