COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

17beta-estradiol-degrading bacteria isolated from activated sludge.

Fourteen phylogenetically diverse 17beta-estradiol-degrading bacteria (strains KC1-14) were isolated from activated sludge of a wastewater treatment plant. These isolates widely distributed among eight different genera--Aminobacter (strains KC6 and KC7), Brevundimonas (strain KC12), Escherichia (strain KC13), Flavobacterium (strain KC1), Microbacterium (strain KC5), Nocardioides (strain KC3), Rhodococcus (strain KC4), and Sphingomonas (strains KC8-KC11 and KC14)--of three Phyla: Proteobacteria, Actinobacteria, and Bacteroidetes. All 14 isolates were capable of converting 17beta-estradiol to estrone, but only three strains (strains KC6, KC7, and KC8) showed the ability to degrade estrone. Only strain KC8 could use 17beta-estradiol as a sole carbon source. Based on the degree of estrogens being transformed and the estrogenicity of metabolites and/ or end products of estrogen degradation, three different degradation patterns (patterns A-C) were observed from degradation tests using resting cells. Eleven out of 14 isolates showed degradation pattern A, where 17beta-estradiol was stoichiometrically converted to estrone. Estrone was confirmed to be a degradation product of 17beta-estradiol; however, estrone was not further degraded during the course of experiments. Strains KC6 and KC7 exhibited degradation pattern B, where both 17beta-estradiol and estrone were degraded, with slower 17beta-estradiol degradation rates than those observed in pattern A. Strain KC8 was the only strain exhibited degradation pattern C, where 17beta-estradiol and estrone were rapidly degraded within 3 days. No residual 17beta-estradiol and estrone or estrogenic activity was detected after 5 days, suggesting that strain KC8 could degrade 17beta-estradiol into nonestrogenic metabolites/end products. Strains KC6-8 exhibited nonspecific monooxygenase activity but not nonspecific dioxygenase activity. However, the relationship between nonspecific monooxygenase activity and its estrogen degradation ability was unclear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app