Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CEACAM1/VEGF cross-talk during neuroblastic tumour differentiation.

The role of angiogenesis in tumour progression is a major subject in modern oncology and a correlation between angiogenesis and poor outcome has been demonstrated for human neuroblastomas. However, the role of angiogenesis in the maturation phase of neuroblastic tumours has never been considered. Human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a potent pro-angiogenic factor and mediator of vascular endothelial growth factor (VEGF)-induced angiogenesis, plays a crucial role during the activation phase of angiogenesis and it has been shown to be expressed in the microvessels of the developing central nervous system as well as in newly formed immature blood vessels in many different tumours and under physiological conditions. The present study has investigated the role of CEACAM1/VEGF-mediated angiogenesis across the whole spectrum of neuroblastic tumours, from undifferentiated to fully differentiated mature ganglioneuromas. CEACAM1 is peculiarly expressed in the microvessels of areas of active tumour maturation among differentiating neuroblastic/ganglion cells, whereas it is completely absent in the vessels of poorly differentiated/undifferentiated as well as in entirely mature Schwannian-rich areas. Interestingly, VEGF expression has been found in differentiating neuroblastic/ganglion cells adjacent to CEACAM1-positive microvessels. In keeping with these observations, VEGF expression was found in human neuroblastoma SH-SY5Y cells during differentiation after retinoic acid treatment. Moreover, conditioned medium from SH-SY5Y cells collected at different stages of differentiation induced progressive in vitro up-regulation of CEACAM1 expression in human umbilical vein endothelial cells (HUVECs) that was abrogated by the specific VEGF receptor-2/KDR inhibitor SU5416. Taken together, these data point to a role for CEACAM1/VEGF cross-talk during the maturation phase of neuroblastic tumours. This may mimic physiological events leading to maturation of the vasculature in the developing normal central nervous system. On the other hand, in poorly differentiated/undifferentiated lesions, VEGF-sustained angiogenesis does not reproduce physiological steps, but rather is associated with tumour aggressiveness and may involve other molecular pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app