JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade.

The outcome for patients with lung cancer has not changed significantly for more than two decades. Several studies show that the overexpression of vascular endothelial growth factor (VEGF)/vascular permeability factor and epidermal growth factor (EGF) and their receptors correlates with the clinical outcome for lung cancer patients. However, clinical trials of agents that target either of these pathways alone have been disappointing. We hypothesize that targeting both the tumor and its vasculature by simultaneously blocking the VEGFR and EGFR pathways will improve the treatment of locoregional lung cancer. Human lung cancer specimens were first examined for the activation of VEGF receptor 2 (VEGFR2) and EGF receptor (EGFR) for tumor and tumor-associated endothelial cells, and both were found to be activated. The effects of ZD6474 (ZACTIMA), a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were then studied in vitro using human lung cancer and microvascular endothelial cells. In vitro, ZD6474 inhibited EGFR, VEGFR2, mitogen-activated protein kinase and Akt phosphorylation, EGF- and VEGF-induced proliferation, and endothelial cell tube formation and also induced apoptosis. ZD6474 was further studied in vivo using an orthotopic mouse model of non-small cell lung cancer using NCI-H441 human lung adenocarcinoma cells. The inhibition of both VEGFR2 and EGFR signaling pathways by ZD6474 resulted in profound antiangiogenic, antivascular, and antitumor effects. These results provide a basis for the development of clinical strategies for the combination of selective protein tyrosine kinase inhibitors that block both EGFR and VEGFR signaling as part of the management of locally advanced lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app