JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts.

Functional intercellular coupling has been demonstrated among networks of cardiac fibroblasts, as well as between fibroblasts and atrial or ventricular myocytes. In this study, the consequences of these interactions were examined by implementing the ten Tusscher model of the human ventricular action potential, and coupling it to our electrophysiological models for mammalian ventricular fibroblasts. Our simulations reveal significant electrophysiological consequences of coupling between 1 and 4 fibroblasts to a single ventricular myocyte. These include alterations in plateau height and/or action potential duration (APD) and changes in underlying ionic currents. Two series of simulations were carried out. First, fibroblasts were modeled as a spherical cell with a capacitance of 6.3 pF and an ohmic membrane resistance of 10.7 G Omega. When these "passive" fibroblasts were coupled to a myocyte, they caused slight prolongation of APD with no changes in the plateau, threshold for firing, or rate of initial depolarization. In contrast, when the same myocyte-fibroblast complexes were modeled after addition of the time- and voltage-gated K(+) currents that are expressed in fibroblasts, much more pronounced effects were observed: the plateau height of the action potential was reduced and the APD shortened significantly. In addition, each fibroblast exhibited significant electrotonic depolarizations in response to each myocyte action potential and the resting potential of the fibroblasts closely approximated the resting potential of the coupled ventricular myocyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app