JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Anti-nociceptive and anti-allodynic effects of a high affinity NOP hexapeptide [Ac-RY(3-Cl)YRWR-NH2] (Syn 1020) in rodents.

There has been a flurry of activity to develop agonists and antagonists for the member of the opioid receptor family, NOP receptor (also known as ORL1), in part to understand its role in pain. Modifications of a hexapeptide originally identified from a combinatorial library have led to the discovery of a high affinity hexapeptide agonist Ac-RY(3-Cl)YRWR-NH2 (Syn 1020). In the following experiments we characterized the anti-nociceptive effects of Syn 1020 in the tail-flick model of acute pain and the diabetic neuropathy model of chronic pain in mice and rats, respectively. Acute antinociception was assessed using the tail-flick assay in mice in which animals received intracerebroventricular (i.c.v.) or subcutaneous (s.c.) injections of Syn 1020 alone or with morphine and were tested for tail-flick latencies. In the chronic pain model, diabetic neuropathy was induced by injections of streptozotocin in rats. Tactile allodynia was measured, with von Frey hair filaments, following intraperitoneal (i.p.) injections of Syn 1020 or gabapentin (positive control). In mice, i.c.v. injections of Syn 1020 did not have any pro- or anti-nociceptive effects, however, Syn 1020 reversed morphine antinociception with a similar potency as N/OFQ (the natural ligand to NOP). S.c. injections of Syn 1020 in mice also produced analgesic effects. In rats, i.p, injections of Syn 1020 produced anti-allodynic effects. Thus, Syn 1020, a NOP receptor directed peptide, administered systemically has anti-nociceptive activity in both acute and chronic pain models in mice and rats respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app