Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway.

Epithelial-mesenchymal transformation (EMT) in response to TGFbeta1 is a coordinated process of tissue morphogenesis that occurs during embryonic development as well as during certain pathologic events including kidney tubulointerstitial fibrosis. It is characterized by the disassembly of cell-cell junctions and dramatic alterations in the actin cytoskeleton that facilitates cell-matrix adhesion and stimulates migration. The focal adhesion adapter protein, Hic-5, has previously been reported to be upregulated during TGFbeta1-induced EMT in mouse mammary epithelial cells and the current study recapitulates this result in both mouse kidney proximal tubule epithelial, MCT, cells and human mammary epithelial, MCF10A, cells. To evaluate a causative role for Hic-5 in EMT, Hic-5 RNA interference (siRNA) was used to prevent Hic-5 expression in response to TGFbeta1 stimulation and was shown to suppress cell migration and actin stress fiber formation. It also resulted in the retention of a robust epithelial cell morphology characterized by elevated E-cadherin protein expression and well-organized adherens junctions. In addition, Hic-5 siRNA treatment led to the suppression of TGFbeta1 induction of RhoA activation. In contrast, forced expression of Hic-5 led to the formation of ROCK-dependent actin stress fibers. Furthermore, the induction of Hic-5 expression in response to TGFbeta1 was shown to be a RhoA/ROCK I-dependent process. Together, these data implicate Hic-5 as a key regulator of EMT and suggest that RhoA stimulated Hic-5 expression in response to TGFbeta1 may be functioning in a feed forward mechanism whereby Hic-5 maintains the mesenchymal phenotype through sustained RhoA activation and signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app