Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?

Injury 2007 March
AIM: To investigate in vitro the mechanical stability of a locking compression plate (LCP) construct in a simulated diaphyseal fracture of the humerus at increasing distances between the plate and bone.

MATERIALS AND METHOD: A series of biomechanical in vitro experiments were performed using composite humerus sawbone as the bone model. Osteotomy created in the mid-diaphyseal region. A 10mm osteotomy gap was bridged with a seven-hole 4.5 stainless steel plate with one of four methods: a control group consisted of a dynamic compression plate applied flush to the bone and three study groups which comprised of a LCP applied flush to the bone, at 2mm and at 5mm from the bone. Standard AO technique used with locking head screws used for LCP fixation. Static and dynamic loading tests performed in a custom made jig in which the bone model was fixed both proximally and distally. Samples were subjected to cyclical compression, compression load to failure, cyclical torque and torque to failure. Plastic deformation and failure was assessed using three-dimensional measurements. Scanning electron microscopy of the plate and screw surface allowed detailed inspection of micro-fracture in areas of fatigue.

RESULTS: Comparable results were achieved in both the DCP and LCP constructs in which the plate was applied at or less than 2mm from the bone. When applied 5mm from the bone the LCP demonstrated significantly increased plastic deformation during cyclical compression and required lower loads to induce construct failure.

CONCLUSION: At a distance 5 mm we observe an inferior performance in the mechanical properties of the LCP construct with decrease in axial stiffness and torsional rigidity. If it is desirable for an LCP to be used the distance between plate and bone should be

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app