Add like
Add dislike
Add to saved papers

Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning.

PURPOSE: To develop standardized correlates of [18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) standard uptake value (SUV) to computed tomography (CT)-based window and levels.

METHODS AND MATERIALS: Nineteen patients with non-small-cell lung cancer who underwent imaging with positron emission tomography (PET) and CT were selected. A method of standardizing SUV within CT planning software was developed. A scale factor, determined by a sensitivity calibration of the PET scanner, converts voxel counts to activity per gram in tissue, allowing SUVs to be correlated to CT window and levels. A method of limiting interobserver variations was devised to enhance "edges" of regions of interest based on SUV thresholds. The difference in gross tumor volumes (GTVs) based on CT, PET SUV >or= 2.5, and regions of 40% maximum SUV were analyzed.

RESULTS: The mean SUV was 9.3. Mean GTV volumes were 253 cc for CT, 221 cc for SUV >or= 2.5, and 97 cc for SUV40%Max. Average volume difference was -259% between >or=2.5 SUV and CT and -162% between SUV40%Max and CT. Percent difference between GTV >or= 2.5 SUV and SUV40%Max remained constant beyond SUV > 7. For SUVs 4-6, best correlation among SUV thresholds occurred at volumes near 90 cc. Mean percent change from GTVs contoured according to CT (GTV CT) was -260% for GTV2.5 and -162% for GTV40%Max. Using the SUV40%Max threshold resulted in a significant alteration of volume in 98% of patients, while the SUV2.5 threshold resulted in an alteration of volume in 58% of patients.

CONCLUSIONS: Our method of correlating SUV to W/L thresholds permits accurate displaying of SUV in coregistered PET/CT studies. The optimal SUV thresholds to contour GTV depend on maximum tumor SUV and volume. Best correlation occurs with SUVs >6 and small volumes <100 cc. At SUVs >7, differences between the SUV threshold filters remain constant. Because of variability in volumes obtained by using SUV40%Max, we recommend using SUV >or= 2.5 for radiotherapy planning in non-small-cell lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app