Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Attenuation of UVA-induced damage to human keratinocytes by silymarin.

BACKGROUND: UV radiation from sunlight is a potent environmental risk factor in skin cancer pathogenesis. UVA is the major portion of UV light reaching the earth surface ( approximately 95%) and it is reported to lead to benign and malignant tumor formation. UVA-mediated cellular damage occurs primarily through the release of reactive oxygen species (ROS) and it is responsible for inflammation, immunosuppression, photoaging and photocarcinogenesis.

OBJECTIVE: The aim of our study was to investigate the potency of silymarin, the polyphenol fraction from the seeds of Silybum marianum, to modulate UVA-induced oxidative damage to human keratinocytes.

METHODS: Skin epidermal cell line HaCaT, extensively used for studying the influence of UV radiation, was chosen as an experimental model. Silymarin's effect on UVA-disrupted cell viability, proliferation, mitochondrial function, and intracellular ATP and GSH level was measured. Furthermore, silymarin's potency to reduce UVA-induced ROS generation, membrane lipid peroxidation, caspase-3 activation and DNA damage was monitored.

RESULTS: Treatment of irradiated HaCaT (20 J/cm(2)) with silymarin (0.7-34 mg/l; 4h) resulted in concentration-dependent diminution of UVA-caused oxidative stress on all studied parameters. Silymarin application extensively reduced GSH depletion and ROS production as well as lipid peroxidation in irradiated cells. Formation of UVA-induced DNA single strand breaks and caspase-3 activity was also significantly decreased by silymarin.

CONCLUSION: The results suggest that silymarin may be beneficial in the treatment of UVA-induced skin oxidative injury and inflammation. However, further studies especially whose using human systems are needed to determine efficacy of silymarin in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app