JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of iron deficiency on photosynthesis and photosystem II function in soybean leaf.

Gas exchange and chlorophyll a fluorescence in soybean plants were investigated to explore the effects of iron deficiency on photosynthesis and photosystem II function in vivo. Iron deficiency induced a drastic decrease in net photosynthesis (Pn). Compared with normal plants, the maximal quantum yield of PSII photochemistry (psipo) in iron-deficient plants was only slightly lower; whereas, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA-(Psio) and quantum yield of electron transport beyond QA (psiEo) were significantly depressed. Iron deficiency also caused a clear enhancement of the relative variable fluorescence at K step (VK). When exposed to light, iron-deficient plants had considerably lower efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), quantum yield of PSII electron transport (PhiPSII), and photochemical quenching coefficient (qP), but markedly higher non-photochemical quenching (NPQ). In addition, post-illumination transient increase in chlorophyll fluorescence was clearly enhanced in iron-deficient plants. Basing on these data, we suggest that both the donor and the acceptor sides of PSII complex were damaged by iron deficiency; cyclic electron transport around PSI in iron-deficient soybean plants might play an important role in inducing the excitation energy dissipation and meeting the demand for extra ATP as a compensation for the loss of phosphorylation capability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app