Phage passage after extended processing in small-virus-retentive filters

Scott Lute, Mark Bailey, Jessica Combs, Muppalla Sukumar, Kurt Brorson
Biotechnology and Applied Biochemistry 2007, 47 (Pt 3): 141-51
Retention of a two small phages (PhiX-174 and pp7) by direct-flow small-virus-retentive filters [Viresolve NFP (normal-flow parvovirus), Virosart CPV (canine parvovirus), Ultipor DV20 and Planova 20N] was studied using a commercial-process fluid. Phage passage occurred in each filter type, particularly when overloaded with phage. Clearances of pp7 and PhiX-174 were similar for any given filter brand, arguing that the two phages are equivalent for testing small-virus-retentive filters. The patterns of flux under constant pressure and instantaneous LRV (log reduction value) in relationship to cumulative phage load differed between brands, consistent with the current industry understanding that each brand possesses specific performance attributes. Phages are a powerful and universal tool for evaluating filter performance. Validation of filter performance with phages such as pp7 or PhiX-174 as models for small mammalian viruses represents an attractive alternative to the current practice.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"