Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy.

Cancer Research 2007 Februrary 2
Immunotherapy with rituximab (chimeric anti-CD20 monoclonal antibody, Rituxan), alone or in conjunction with chemotherapy, has significantly improved the treatment outcome of lymphoma patients. Via an elusive mechanism, a subpopulation of patients becomes unresponsive and/or relapses. To recapitulate various aspects of acquired resistance, rituximab-resistant (RR) clones were established from lymphoma lines and compared with parental cells. Surface CD20 expression was diminished in the clones. The clones neither responded to rituximab-mediated growth reduction or complement-dependent cytotoxicity nor underwent apoptosis in response to cross-linked rituximab. Rituximab failed to chemosensitize the RR clones, which exhibited constitutive hyperactivation of the nuclear factor-kappaB and extracellular signal-regulated kinase 1/2 pathways, leading to overexpression of B-cell lymphoma protein 2 (Bcl-2), Bcl-2-related gene (long alternatively spliced variant of Bcl-x gene), and myeloid cell differentiation 1 and higher drug resistance. Unlike parental cells, rituximab neither inhibited the activity of these pathways nor diminished the expression of resistant factors. Pharmacologic inhibitors of the survival pathways or Bcl-2 family members reduced the activity of these pathways, diminished antiapoptotic protein expression, and chemosensitized the RR clones. These novel in vitro results denote that continuous long-term rituximab exposure culminates in RR clones that do not respond to rituximab-mediated effects, have altered cellular signaling dynamics, and exhibit different genetic and phenotypic properties compared with parental cells. The data also reveal that although RR clones exhibit higher resistance to rituximab and cytotoxic drugs, these clones can be chemosensitized following treatment with pharmacologic inhibitors (e.g., dehydroxymethylepoxyquinomicin, bortezomib, PD098059) that target survival/antiapoptotic pathways. The findings also identify intracellular targets for potential molecular therapeutic intervention to increase treatment efficacy. The significance and potential clinical relevance of the findings are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app