JOURNAL ARTICLE

Force-velocity and power-velocity relationships during maximal short-term rowing ergometry

Robert C Sprague, James C Martin, Christopher J Davidson, Roger P Farrar
Medicine and Science in Sports and Exercise 2007, 39 (2): 358-64
17277601

INTRODUCTION: Maximal rowing power-velocity relationships that exhibit ascending and descending limbs and a local maximum have not been reported. Further, duty cycle (portion of the stroke occupied by the pull phase) is unconstrained during rowing and is known to influence average muscular power output.

PURPOSE: Our purposes for conducting this study were to fully describe maximal short-term rowing force-velocity and power-velocity relationships. Within the context of those purposes, we also aimed to determine the apex of the power-velocity relationship and the influence of freely chosen duty cycle on stroke power.

METHODS: Collegiate varsity male rowers (N = 11, 22.9 +/- 2.3 yr, 84.1 + 12.1 kg, 184 +/- 7 cm) performed five maximal rowing trials using an inertial load ergometer. For each stroke, we determined force and power averaged for the pull phase and the complete stroke, instantaneous peak force and power, average handle velocity for the pull phase, handle velocity at peak instantaneous force and power, pull time, recovery time, and freely chosen duty cycle. Force-velocity and power-velocity relationships were characterized using regression analyses, and optimal velocities were determined from the regression coefficients.

RESULTS: Pull force-velocity (r2 = 0.99) and peak instantaneous force-velocity (r2 = 0.93) relationships were linear. Stroke power (r2 = 0.98), pull power (r2 = 0.99), and instantaneous peak power (r2 = 0.99) were quadratic, with apexes at 2.04, 3.25, and 3.43 m x s(-1), respectively. Maximum power values were 812 +/- 28 W (9.8 +/- 0.4 W x kg(-1)), 1995 +/- 67 W (23.9 +/- 0.7 W x kg(-1)), and 3481 +/- 112 W (41.9 +/- 1.3 W x kg(-1)) for stroke, pull, and instantaneous power, respectively. Freely chosen duty cycle decreased from 58 +/- 1% on the first stroke to 26 +/- 1% on the fifth stroke.

CONCLUSIONS: These data characterized the maximal rowing force-velocity and power-velocity relationships and identified the optimal velocity for producing maximal rowing power. Differences in maximum pull and stroke power emphasized the importance of duty cycle.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17277601
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"