Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.

Brain Research 2007 March 24
This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app