JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells.

We investigated the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on human colon cancer cell lines to clarify the mechanisms underlying the chemopreventive effect of NSAIDs. Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, induced apoptosis and strongly reduced the expression of an anti-apoptotic protein, survivin, in both protein and mRNA levels in HCT-116 cells. Subsequently, we conducted luciferase reporter assay using a reporter gene driven by the human survivin promoter. A series of analyses using luciferase reporter constructs containing fragments of the survivin promoter and electrophoretic mobility shift assay indicated that the -75/-66 bp region relative to the initiating codon was involved in celecoxib action to suppress survivin promoter activity. Celecoxib also suppressed the activity of TOPflash, T-cell factor reporter plasmid, and the reporter gene driven by the human cyclin D1 promoter, suggesting that this compound inhibited the expression of Wnt/beta-catenin signaling target genes. Further, we found that other NSAIDs including indomethacin, resveratrol, and SC-560 induced apoptosis and suppressed the expression of survivin and the Wnt/beta-catenin signaling pathway in HCT-116 cells, indicating that these effects were likely to be common among NSAIDs. Moreover, NSAIDs (celecoxib, SC-560 and indomethacin) also suppressed the expression of cyclin D1 and survivin on other colon cancer cell lines (DLD-1 and SW-620). Our results suggested that NSAIDs could inhibit proliferation and induce apoptosis in colon cancer cells by inhibition of survivin expression and the Wnt/beta-catenin signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app