JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Hydrogel-based reconfigurable components for microfluidic devices.

Lab on a Chip 2007 Februrary
In situ liquid-phase photopolymerization (LP(3)) has been applied to the field of microfluidics to create components within integrated systems. As an extension of LP(3) technology, we present reconfigurable components that utilize the swelling of hydrogels. These components can be conveniently used to enhance microfluidic functions and applications. In order to utilize the swelling characteristic of hydrogels to the fullest, we demonstrate strategies to increase the swelling performance temporally and spatially. To this end, two successful applications using the reconfigurable components were tested: (1) active walls to block or divert flow at different steps in the fabrication or assay process, and (2) delivery pistons to move objects to specific locations within the microchannels after device fabrication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app