Add like
Add dislike
Add to saved papers

Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts.

The sequence of biochemical events involved in mechanical stress-induced signaling in osteoblastic cells remains unclear. Runx2, a transcription factor involved in the control of osteoblast differentiation, has been identified as a target of mechanical stress-induced signaling in osteoblastic cells. In this study, uniaxial sinusoidal stretching (15% strain, 115% peak-to-peak, at 1/12 Hz) stimulated the differentiation of osteoblast-like MC3T3-E1 cells and rat primary osteoblastic cells by activating Runx2. We examined the involvement of diverse mitogen-activated protein kinase (MAPK) pathways in the activation of Runx2 during mechanical stress. Mechanical stress increased alkaline phosphatase activity, a marker of osteoblast differentiation, increased the expression of the osteoblast-specific extracellular matrix (ECM) protein osteocalcin, and induced Runx2 activation, along with increased osterix expression. Furthermore, activation of ERK1/2 and p38 MAPKs increased significantly. U0126, a selective inhibitor of ERK1/2, completely blocked Runx2 activation during periods of mechanical stress, but the p38 MAPK-selective inhibitor SB203580 did not alter nuclear phosphorylation of Runx2. Small interfering RNA (siRNA) targeting Rous sarcoma kinase (RAS), an upstream regulator of both ERK1/2 and p38 MAPKs, inhibited stretch-induced ERK1/2 activation, but not mechanically induced p38 MAPK activity. Furthermore, mechanically induced Runx2 activation was inhibited by Ras depletion, using siRNA. These findings indicate that mechanical stress regulates Runx2 activation and favors osteoblast differentiation through the activation of MAPK signal transduction pathways and Ras/Raf-dependent ERK1/2 activation, independent of p38 MAPK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app