JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia.

A disruption of corticostriatal signaling is believed to underlie the psychotic symptoms of schizophrenia and also contribute to many of the cognitive deficits associated with this disorder. Phosphodiesterase (PDE)10A is a dual substrate PDE highly expressed in striatal medium spiny neurons. Biochemical and behavioral studies indicate that the inhibition of PDE10A enhances striatal output by increasing activity in the cGMP and cAMP signaling pathways. PDE10A inhibitors reduce exploratory activity and antagonize the stimulant response to both amphetamine and N-methyl-d-aspartate antagonists such as phencyclidine. Consistent with their potential as antipsychotic agents, PDE10A inhibitors are potent antagonists of conditioned avoidance responding. The presence of PDE10A in both striatal output pathways may reduce the incidence and severity of dopamine D2 receptor antagonist-like side effects, including extrapyramidal symptoms. In addition, by enhancing corticostriatal signaling, PDE10A inhibitors have the potential to improve some of the cognitive symptoms of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app