JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Aromatase inhibitors: structural features and biochemical characterization.

Aromatase is the enzyme synthesizing estrogens from androgens. In estrogen-dependent breast tumors, estrogens induce the expression of growth factors responsible for cancer cell proliferation. In situ estrogen synthesis by aromatase "is thought to play a key role in the promotion of breast cancer growth. Aromatase inhibitors (AIs) provide new approaches for the prevention and treatment of breast cancer by inhibiting estrogen biosynthesis. Through reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical techniques, aromatase has been found to be expressed in many endocrine tissues and tumors originating from these tissues. Unexpectedly, this enzyme is now known to also be expressed in liver, lung, and colon cancers. Such findings suggest a potential role for endocrine manipulation of these types of cancer using AIs. Three Food and Drug Administration (FDA)-approved AIs, anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin), effectively challenging tamoxifen, have been used as first-line drugs in the treatment of hormone-dependent breast cancer, and possibly other aromatase-expressing cancers. In addition, natural anti-aromatase chemicals, such as flavones and coumarins, have been identified. Efforts to develop new lines of AIs derived from these phytochemicals have been initiated in several laboratories. Finally, significant progress has been made in the understanding of the structure-function relationship of aromatase. Such information has helped the examination of binding characteristics of AIs, the evaluation of reaction mechanism of aromatase, and the explanation of the molecular basis for a low catalytic activity of the natural variant, M364T.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app