JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance.

Diabetes 2007 Februrary
Protein-tyrosine phosphatase (PTP)1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. In this study, we have assessed the role of PTP1B in the insulin sensitivity of skeletal muscle under physiological and insulin-resistant conditions. Immortalized myocytes have been generated from PTP1B-deficient and wild-type neonatal mice. PTP1B(-/-) myocytes showed enhanced insulin-dependent activation of insulin receptor autophosphorylation and downstream signaling (tyrosine phosphorylation of insulin receptor substrate [IRS]-1 and IRS-2, activation of phosphatidylinositol 3-kinase, and serine phosphorylation of AKT), compared with wild-type cells. Accordingly, PTP1B(-/-) myocytes displayed higher insulin-dependent stimulation of glucose uptake and GLUT4 translocation to the plasma membrane than wild-type cells. Treatment with tumor necrosis factor-alpha (TNF-alpha) induced insulin resistance on glucose uptake, impaired insulin signaling, and increased PTP1B activity in wild-type cells. Conversely, the lack of PTP1B confers protection against insulin resistance by TNF-alpha in myocyte cell lines and in adult male mice. Wild-type mice treated with TNF-alpha developed a pronounced hyperglycemia along the glucose tolerance test, accompanied by an impaired insulin signaling and increased PTP1B activity in muscle. However, mice lacking PTP1B maintained a rapid clearance of glucose and insulin sensitivity and displayed normal muscle insulin signaling regardless the presence of TNF-alpha.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app