Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms underlying the inhibitory actions of the pentacyclic triterpene alpha-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate.

The present study evaluated some of the mechanisms through which alpha-amyrin, a pentacyclic triterpene isolated from Protium Kleinii and other plants, exerts its effects against 12-O-tetradecanoylphorbol-acetate (TPA)-induced skin inflammation in mice. Topical application of alpha-amyrin (0.1-1 mg/ear) dose-dependently inhibited TPA-induced increase of prostaglandin E2 (PGE2) levels. In contrast with the selective cyclooxygenase (COX)-1 SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or COX-2 rofecoxib inhibitors, alpha-amyrin failed to alter either COX-1 or COX-2 activities in vitro. Western blot analysis revealed that alpha-amyrin dose-dependently inhibited TPA-induced COX-2 expression in the mouse skin. The evaluation of nuclear factor-kappaB (NF-kappaB) pathway revealed that topical treatment with alpha-amyrin is able to prevent IkappaB alpha degradation, p65/RelA phosphorylation and NF-kappaB activation. Moreover, alpha-amyrin given topically dose-dependently inhibited the activation of upstream protein kinases, namely extracellular signal-regulated protein kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC)alpha, following topical TPA treatment. Collectively, present results suggest that topical skin application of alpha-amyrin exerts a strong and rapid onset inhibition of TPA-induced inflammation. These effects seem to be associated with the suppression of skin PGE2 levels by mechanisms involving the suppression of COX-2 expression, via inhibition of upstream protein kinases--namely ERK, p38 MAPK and PKCalpha--and blocking of NF-kappaB activation. These results indicate that alpha-amyrin-derivative could be potentially relevant for the development of a topical agent for the management of inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app