Add like
Add dislike
Add to saved papers

IL-2-independent generation of FOXP3(+)CD4(+)CD8(+)CD25(+) cytotoxic regulatory T cell lines from human umbilical cord blood.

OBJECTIVE: Since the existence of mouse naturally occurring CD4(+)CD25(+) T regulatory (Treg) cells was demonstrated, a variety of human Treg subsets have been identified as distinct T cell populations. Here we show the establishment of novel Treg cell lines possessing unique characteristics.

METHODS: Novel Treg cell lines, designated HOZOT, were generated by coculturing human umbilical cord blood cells with mouse stromal cell lines in the absence of exogenous IL-2 or other cytokines. HOZOT were characterized and compared with CD4(+)CD25(+) Treg cells in terms of the CD phenotype, FOXP3 expression, suppressor activity against allogeneic MLR, anergy property, and IL-10 production.

RESULTS: HOZOT were generated and expanded as normal lymphoblastoid cells with cytotoxic activity against the cocultured stromal cells. HOZOT consisted of three subpopulations as defined by phenotype: CD4(+)CD8(+), CD4(+)CD8(dim), and CD4(-)CD8(+). All three subpopulations showed both suppressor and cytotoxic activities. While HOZOT's expression of FOXP3, CD25, GITR, and cytoplasmic CTLA-4 implied a similarity to naturally occurring CD4(+)CD25(+) Treg cells, these two Treg cells differed in IL-2 responsiveness and IL-10 production.

CONCLUSIONS: Our studies introduce a new method of generating Treg cells in an IL-2-independent manner and highlight a unique Treg cell type with cytotoxic activity and a phenotype of FOXP3(+)CD4(+)CD8(+)CD25(+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app