Add like
Add dislike
Add to saved papers

Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots.

Catharanthus roseus has been well-known to contain indole alkaloids effective for treatment of diverse cancers. We examined the intracellular accumulation profiles of phenolic compounds in response to ectopic overexpression of tryptophan feedback-resistant anthranilate synthase holoenzyme (ASalphabeta) in C. roseus hairy roots. Among 13 phenolic compounds measured, 6 phenolic compounds were detected in late exponential phase ASalphabeta hairy roots. Uninduced and induced ASalphabeta hairy roots accumulated up to 1.2 and 4.5 mg/g DW over a 72-h period, respectively. Upon induction, in parallel with a rapid increase in tryptophan in the first 48 h, accumulation of phenolic compounds tended to increase to a maximum level (4.5 mg/g DW) at 48 h, after which phenolic levels decreased back to the uninduced level by 72 h. Naringin was a predominant form that comprised about 72% and 36% of the total content of phenolic compounds in the uninduced and induced lines, respectively. Upon induction, accumulation of catechin drastically increased with the highest level (3.6 mg/g) occurring at 48 h, whereas that of all others except for salicylic acid showed no statistical difference. Catechin is a final product of the flavonoid pathway, and thus metabolic flux into this pathway is transiently increased by overexpression of AS. Like catechin, salicylic acid is very sensitive to induction as it began to increase to 5-fold within 4 h of induction, but unlike catechin, no significant accumulation of salicylic acid was noted after 4 h of induction. The results suggest differential regulation of this particular biosynthesis branch within the phenolic pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app