Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.

We use CASSCF and MRPT2 calculations to characterize the bridge photoisomerization pathways of a model red fluorescent protein (RFP) chromophore model. RFPs are homologues of the green fluorescent protein (GFP). The RFP chromophore differs from the GFP chromophore via the addition of an N-acylimine substitution to a common hydroxybenzylidene-imidazolinone (HBI) motif. We examine the substituent effects on the manifold of twisted intramolecular charge-transfer (TICT) states which mediates radiationless decay via bridge isomerization in fluorescent protein chromophore anions. We find that the substitution destabilizes states associated with isomerization about the imidazolinone-bridge bond and stabilizes states associated with phenoxy-bridge bond isomerization. We discuss the results in the context of chromophore conformation and quantum yield trends in the RFP subfamily, as well as recent studies on synthetic models where the acylimine has been replaced with an olefin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app