COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Mouse colon sensory neurons detect extracellular acidosis via TRPV1.

Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app