JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hair analysis for illicit drugs by using capillary zone electrophoresis-electrospray ionization-ion trap mass spectrometry.

In forensic toxicology, hair analysis has become a well established analytical strategy to investigate retrospectively drug abuse histories. In this field, gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry are currently used, often after preliminary screening with immunoassays. However, on the basis of previous applications to pharmaceutical analysis, capillary zone electrophoresis coupled to ion trap mass spectrometry looks also highly promising. The purpose of the present work was the development of a simple and rapid CZE-MS method for sensitive and quantitative determination of the main drugs of abuse and their metabolites (namely, 6-monoacetylmorphine, morphine, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethampthetamine (MDMA), benzoylecgonine, ephedrine and cocaine) in human hair. Hair samples (100 mg) were washed, cut and incubated overnight in 0.1 M HCl at 45 degrees C, then neutralized with NaOH and extracted by a liquid-liquid extraction method. CZE separations were carried out in a 100 cm x 75 microm (I.D.) uncoated fused silica capillary. The separation buffer was composed of 25 mM ammonium formate, pH 9.5; the separation voltage was 15 kV. Electrokinetic injections were performed at 7 kV for 30 s under field amplified sample stacking conditions. ESI-ion trap MS detection was performed in the ESI positive ionization mode using the following conditions: capillary voltage 4 kV, nebulizer gas (nitrogen) pressure 3psi, source temperature 150 degrees C and drying gas (nitrogen) flow rate 8l/min. A sheath liquid, composed of isopropanol-water (50:50, v/v) with 0.5% formic acid, was delivered at a flow rate of 4 microl/min. The ion trap MS operated in a selected ion monitoring mode (SIM) of positive molecular ions for each drug/metabolite. Collision induced fragmentation was also possible. Nalorphine was used as internal standard. Under the described conditions, the separation of all compounds, except amphetamine/methamphetamine, MDA/MDMA and morphine/6-MAM was achieved in 20 min, with limits of detection lower than the most severe cut-offs adopted in hair analysis (i.e. 0.1 ng/mg). Linearity was assessed within drug concentration ranges from 0.025 to 5 ng of each analyte/mg of hair. Analytical precision was fairly acceptable with RSD's < or = 3.06% for migration times and < or = 22.47% for areas in real samples, in both intra-day and day-to-day experiments. On these grounds, the described method can be proposed for rapid, selective and accurate toxicological hair analysis for both clinical and forensic purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app