EVALUATION STUDIES
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

In vitro validated finite element method model for a human skull and related craniofacial effects during rapid maxillary expansion.

This paper presents the biomechanical effects on the craniofacial complex during rapid maxillary expansions (RME), by using an in vitro experiment compared with a three-dimensional (3D) finite element model of a human skull. For this purpose, a dry human skull with artificially constructed teeth was used. In addition, a 3D finite element model including the craniofacial sutures was developed based on computed tomography (CT) scans. Initially, two types of models were analysed. In the first model, the total activation of the jackscrew device was applied in one step. In the second model, more steps were applied, taking into account the phenomenon of stress relaxation during RME treatment. Afterwards, a parametric analysis of the finite element method model was performed using three more models in order to evaluate the influence of craniofacial sutures. Both in vitro and finite element results refer to the openings of four critical points (MI, UM, EM, and CN) on the left and right maxilla. Results show that the maxillae open in a pyramidal shape and that the degree of sutures ossification influences the displacement distribution on the craniofacial complex much more than the phenomenon of stress relaxation. The areas of the maximum stresses and displacements were also determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app