JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.

The hypothesis that ultraendurance exercise influences muscle mitochondrial function has been investigated. Athletes in ultraendurance performance performed running, kayaking, and cycling at 60% of their peak O(2) consumption for 24 h. Muscle biopsies were taken preexercise (Pre-Ex), postexercise (Post-Ex), and after 28 h of recovery (Rec). Respiration was analyzed in isolated mitochondria during state 3 (coupled to ATP synthesis) and state 4 (noncoupled respiration), with fatty acids alone [palmitoyl carnitine (PC)] or together with pyruvate (Pyr). Electron transport chain activity was measured with NADH in permeabilized mitochondria. State 3 respiration with PC increased Post-Ex by 39 and 41% (P < 0.05) when related to mitochondrial protein and to electron transport chain activity, respectively. State 3 respiration with Pyr was not changed (P > 0.05). State 4 respiration with PC increased Post-Ex but was lower than Pre-Ex at Rec (P < 0.05 vs. Pre-Ex). Mitochondrial efficiency [amount of added ADP divided by oxygen consumed during state 3 (P/O ratio)] decreased Post-Ex by 9 and 6% (P < 0.05) with PC and PC + Pyr, respectively. P/O ratio remained reduced at Rec. Muscle uncoupling protein 3, measured with Western blotting, was not changed Post-Ex but tended to decrease at Rec (P = 0.07 vs. Pre-Ex). In conclusion, extreme endurance exercise decreases mitochondrial efficiency. This will increase oxygen demand and may partly explain the observed elevation in whole body oxygen consumption during standardized exercise (+13%). The increased mitochondrial capacity for PC oxidation indicates plasticity in substrate oxidation at the mitochondrial level, which may be of advantage during prolonged exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app