JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Combinatorial epigenetics, "junk DNA", and the evolution of complex organisms.

Gene 2007 April 2
At certain evolutionary junctures, two or more mutations participating in the build-up of a new complex function may be required to become available simultaneously in the same individuals. How could this happen in higher organisms whose populations are small compared to those of microbes, and in which chances of combined nearly simultaneous highly specific favorable mutations are correspondingly low? The question can in principle be answered for regulatory evolution, one of the basic processes of evolutionary change. A combined resetting of transcription rates in several genes could occur in the same individual. It is proposed that, in eukaryotes, changes in epigenetic trends and epigenetically transforming encounters between alternative chromatin structures could arise frequently enough so as to render probable particular conjunctions of changed transcription rates. Such conjunctions could involve mutational changes with low specificity requirements in gene-associated regions of non-protein-coding sequences. The effects of such mutations, notably when they determine the use of histone variants and covalent modifications of histones, can be among those that migrate along chromatin. Changes in chromatin structure are often cellularly inheritable over at least a limited number of generations of cells, and of individuals when the germ line is involved. SINEs and LINEs, which have been considered "junk DNA", are among the repeat sequences that would appear liable to have teleregulatory effects on the function of a nearby promoter, through changes in their numbers and distribution. There may also be present preexisting unstably inheritable epigenetic trends leading to cellular variegation, trends endemic in a cell population based on DNA sequences previously established in the neighborhood. Either way, epigenetically conditioned teleregulatory trends may display only limited penetrance. The imposition at a distance of new chromatin structures with regulatory impact can occur in cis as well as in trans, and is examined as intrachromosomally spreading teleregulation and interchromosomal "gene kissing". The chances for two or more particular epigenetically determined regulatory trends to occur together in a cell are increased thanks to the proposed low specificity requirements for most of the pertinent sequence changes in intergenic and intronic DNA or in the distribution of middle repetitive sequences that have teleregulatory impact. Inheritable epigenetic changes ("epimutations") with effects at a distance would then perdure over the number of generations required for "assimilation" of the several regulatory novelties through the occurrence and selection, gene by gene, of specific classical mutations. These mutations would have effects similar to the epigenetic effects, yet would provide stability and penetrance. The described epigenetic/genetic partnership may well at times have opened the way toward certain complex new functions. Thus, the presence of "junk DNA", through co-determining the (higher or lower) order and the variants of chromatin structure with regulatory effects at a distance, might make an important contribution to the evolution of complex organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app