JOURNAL ARTICLE

Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum

K Vasanth Kumar, K Porkodi
Journal of Hazardous Materials 2007 July 19, 146 (1): 214-26
17222969
Batch experiments were carried out for the sorption of methylene blue onto Paspalum notatum. The operating variables studied were initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherms by non-linear regression method. Six error functions was used to determine the optimum isotherm by non-linear regression method. The present study shows r2 as the best error function to determine the parameters involved in both two- and three-parameter isotherms. Langmuir isotherm was found to be the optimum isotherm for methylene blue onto P. notatum. The monolayer methylene blue sorption capacity of P. notatum was found to be 31 mg/g. The kinetics of methylene blue onto P. notatum was found to follow a pseudo second order kinetics. A Boyd plot confirms the external mass transfer as the rate-limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc0.33) and was found to vary as C(0)-5x10(-6).

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17222969
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"