JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Related trends in locomotor and respiratory muscle oxygenation during exercise.

PURPOSE: We investigated the potential effect of respiratory muscle work on leg muscle oxygenation without artificial intervention in non-endurance-trained young subjects and searched for the range of intensity when this effect could occur.

METHODS: We simultaneously monitored accessory respiratory and leg muscle oxygenation patterns with near-infrared spectroscopy (NIRS) in 15 healthy young men performing maximal incremental exercise on a cycle ergometer. Pulmonary gas exchange was measured. The respiratory compensation point (RCP) was determined. Oxygenation (RMO2) and blood volume (RMBV) of the serratus anterior (accessory respiratory muscle) and of the vastus lateralis (LegO2 and LegBV) were monitored with NIRS. The breakdown point of accessory respiratory muscle oxygenation (BPRMO2) and the accelerated (BP1LegO2) and attenuated fall (BP2LegO2) in leg muscle oxygenation were detected.

RESULTS: BPRMO2 occurred at approximately 85% .VO2max and was related to RCP (r = 0.88, P < 0.001). BP2LegO2 appeared at approximately 83% .VO2max and was related to RCP (r = 0.57, P < 0.05) and with BPRMO2 (r = 0.64, P = 0.01). From BP2LegO2 to maximal exercise, LegBV was significantly reduced (P < 0.05).

CONCLUSION: In active subjects exercising at heavy exercise intensities, we observed that the appearance of the accelerated drop in accessory respiratory muscle oxygenation-associated with high ventilatory level-was related with the attenuated fall in leg muscle oxygenation detected with near-infrared spectroscopy. This suggests that the high oxygen requirement of respiratory muscle leads to limited oxygen use by locomotor muscles as demonstrated in endurance-trained subjects. The phenomenon observed was associated with reduced leg blood volume, supporting the occurrence of leg vasoconstriction. These events appeared not only at maximal exercise but onward above the respiratory compensation point.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app