Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual effect of thapsigargin on cell death in porcine aortic smooth muscle cells.

A sustained increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) can cause cell death. In this study, we found that, in cultured porcine aortic smooth muscle cells, endoplasmic reticulum (ER) stress, triggered by depletion of Ca(2+) stores by thapsigargin (TG), induced an increase in the [Ca(2+)](i) and cell death. However, the TG-induced death was not related to the [Ca(2+)](i) increase but was mediated by targeting of activated Bax to mitochondria and the opening of mitochondrial permeability transition pores (PTPs). Once the mitochondrial PTPs had opened, several events, including collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-3 activation, occurred and the cells died. TG-induced cell death was completely inhibited by the pan-caspase inhibitor Z-VAD-fmk and was enhanced by the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suggesting the existence of a Ca(2+)-dependent anti-apoptotic mechanism. After TG treatment, Ca(2+)-sensitive mitogen-activated protein kinase (MAPK) activation was induced and acted as a downstream effector of phosphatidylinositol 3-kinase (PI 3-kinase). The protective effect of Z-VAD-fmk on TG-induced cell death was reversed by BAPTA, PD-098059 (an MAPK kinase inhibitor), or LY-294002 (a PI 3-kinase inhibitor). Taken together, our data indicate that ER stress simultaneously activate two pathways, the mitochondrial caspase-dependent death cascade and the Ca(2+)-dependent PI 3-kinase/MAPK anti-apoptotic machinery. The Bax activation and translocation, but not the [Ca(2+)](i) increase, may activate mitochondrial PTPs, which, in turn, causes activation of caspases and cell death, whereas Ca(2+)-dependent MAPK activation counteracts death signaling; removal of Ca(2+) activated a second caspase-independent death pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app