COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Actin-dependent regulation of connective tissue growth factor.

Expression of connective tissue growth factor (CTGF) in endothelial cells is modulated by shear stress affecting the organization of the cytoskeleton. The molecular connection between alterations of actin and CTGF expression was investigated in human umbilical vein endothelial cells (HUVEC) and a microvascular endothelial cell line. Overexpression of nonpolymerizable monomeric actin R62D interfered with stress fiber formation in HUVEC and concomitantly reduced immunoreactive CTGF. In microvascular endothelial cells, flow-dependent upregulation of CTGF was prevented by this actin mutant. In contrast, overexpression of actin S14C strengthened filamentous actin and increased CTGF expression. These data indicated an inverse relationship between CTGF expression and monomeric actin. Coexpression of the mutant actins and different CTGF promoter constructs revealed an actin-sensitive site between 3 and 4.5 kb of the CTGF promoter. A CArG-like box at -3791 bp was responsible for actin-dependent CTGF induction as shown by mutagenesis. Overexpression of actin S14C activated the nonmutated promoter significantly more strongly than the mutated promoter. Actin polymerization is regulated by the small GTPase RhoA and activation of serum response factor (SRF). Overexpression of constitutively active RhoA or SRF significantly increased CTGF protein synthesis. The 4.5-kb promoter construct, but not the construct with a mutation in the CArG box, was activated by SRF or RhoA, providing evidence for a functional role of this site in CTGF induction. These findings provide novel evidence that monomeric actin is the connecting link between alterations in the cytoskeleton and CTGF gene expression and demonstrate the importance of SRF in regulating CTGF transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app