Inhibition of Fas-associated apoptosis in granulation tissue cells accompanies attenuation of postinfarction left ventricular remodeling by olmesartan

Hiromitsu Kanamori, Genzou Takemura, Yiwen Li, Hideshi Okada, Rumi Maruyama, Takuma Aoyama, Shusaku Miyata, Masayasu Esaki, Atsushi Ogino, Munehiro Nakagawa, Hiroaki Ushikoshi, Masanori Kawasaki, Shinya Minatoguchi, Hisayoshi Fujiwara
American Journal of Physiology. Heart and Circulatory Physiology 2007, 292 (5): H2184-94
Blockade of angiotensin II type 1 receptor (AT1) signaling attenuates heart failure following myocardial infarction (MI), perhaps through reduction of fibrosis in the noninfarcted myocardium. However, its specific effect on the infarct tissue itself has not been fully clarified, which we examined in the present study. After MI induction in mice, treatment with the AT1 blocker olmesartan, beginning on the 3rd day post-MI, significantly improved survival (94%) 4 wk post-MI, compared with saline (53%) and hydralazine (73%). Olmesartan-treated mice also showed significant attenuation of left ventricular dilatation and dysfunction, as well as significantly greater infarct wall thickness, although the absolute size of the infarct scar was unchanged. In addition, significantly greater numbers of nonmyocytes (mainly vascular cells and myofibroblasts) were present within the infarct scar in olmesartan-treated hearts. Ten days post-MI, apoptosis among granulation tissue cells was significantly suppressed in the olmesartan-treated hearts, where expression of Fas, Bax, procaspase-3, and Daxx and activation of caspase-3, c-Jun NH(2)-terminal kinase, and c-Jun were all significantly attenuated. By contrast, expression of Fas ligand, Bcl-2, and Fas-associated death domain and activation of caspase-8 were unaffected, suggesting olmesartan exerts a negative regulatory effect on the alternate pathway downstream of Fas receptor. In vitro, olmesartan dose-dependently inhibited Fas-mediated apoptosis in granulation tissue-derived myofibroblasts. The present study proposes this antiapoptotic effect as another important mechanism for an AT1 blocker in improving post-MI ventricular remodeling, as well as its antifibrotic effect, and also suggests a significant link between renin-angiotensin and Fas/Fas ligand systems in postinfarction hearts.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"