JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Activation of the external urethral sphincter central pattern generator by a 5-HT(1A) receptor agonist in rats with chronic spinal cord injury.

We recently demonstrated that treatment with the 5-HT(1A/7) receptor agonist [(R)-(+)-8-hydroxy-2-di-n-propylamino]tetralin (8-OH-DPAT) increases bladder capacity in chloralose-anesthetized female cats with chronic spinal cord injury. In the current study, we investigated the effects of 8-OH-DPAT on bladder capacity and external urethral sphincter (EUS) activity in urethane-anesthetized female rats (initial body mass 175-200 g) with chronic spinal cord injury (transsection at T10). Cystometric study took place 8-12 wk posttranssection. Intravesical pressure was monitored in urethane-anesthetized rats with a transvesical catheter, and EUS activity was assessed electromyographically. Spinal cord injury disrupts phasic activity of the EUS, resulting in decreased voiding efficiency and increased residual volume. 8-OH-DPAT induced a dose-dependent decrease in bladder capacity (the opposite of its effect in chronic spinal cord-injured cats) with an increase in micturition volume and decrease in residual volume resulting from improvement in voiding efficiency. The unexpected improvement in voiding efficiency can be explained by the 8-OH-DPAT-induced emergence of phasic EUS relaxation. Phasic EUS relaxation was also altered by 8-OH-DPAT in spinally intact rats, whereas the 5-HT(1A) receptor antagonist N-tert-butyl-3-[4-(2-methoxyphenyl)-piperazin-1-yl]-2-phenylpropanamide (WAY-100635), on its own, was without effect. It remains to be determined when phasic relaxation is restored after spinal cord injury, and indeed whether it is ever truly lost or is only temporarily separated from excitatory input.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app