EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Concurrent duodenal manometric and impedance recording to evaluate the effects of hyoscine on motility and flow events, glucose absorption, and incretin release.

Upper gastrointestinal motor function and incretin hormone secretion are major determinants of postprandial glycemia and insulinemia. However, the impact of small intestinal flow events on glucose absorption and incretin release is poorly defined. Intraluminal impedance monitoring is a novel technique that allows flow events to be quantified. Eight healthy volunteers were studied twice, in random order. A catheter incorporating six pairs of electrodes at 3-cm intervals, and six corresponding manometry sideholes, was positioned in the duodenum. Hyoscine butylbromide (20 mg) or saline was given as an intravenous bolus, followed by a continuous intravenous infusion of either hyoscine (20 mg/h) or saline over 60 min. Concurrently, glucose and 3-O-methylglucose (3-OMG) were infused into the proximal duodenum (3 kcal/min), with frequent blood sampling to measure glucose, 3-OMG, insulin, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The frequency of duodenal pressure waves and propagated pressure wave sequences was reduced by hyoscine in the first 10 min (P<0.01 for both), but not after that time. In contrast, there were markedly fewer duodenal flow events throughout 60 min with hyoscine (P<0.005). Overall, blood glucose (P<0.01) and plasma 3-OMG concentrations (P<0.05) were lower during hyoscine than saline, whereas plasma insulin, GLP-1, and GIP concentrations were initially (t=20 min) lower during hyoscine (P<0.05). In conclusion, intraluminal impedance measurement may be more sensitive than manometry in demonstrating alterations in duodenal motor function. A reduction in the frequency of duodenal flow events is associated with a decreased rate of glucose absorption and incretin release in healthy subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app