Add like
Add dislike
Add to saved papers

Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon.

Dyes are usually presents in the effluent water of many industries, such as textiles, leather, paper, printing and cosmetics. The effectiveness of dye adsorption from wastewater has made to get alternative different low cost adsorbent to other expensive treatment methods. The adsorption of methylene blue onto dehydrated wheat bran (DWB) was investigated at temperatures (25-45 degrees C), initial methylene blue (MB) concentrations (100-500 mg L(-1)) and adsorbent dosage at the given contact time for the removal of dye. The optimum adsorption conditions were found to be as medium pH of 2.5 and at the temperature of 45 degrees C for the varying adsorbent dosage. Equilibrium isotherms were analysed by Freundlich, Langmuir and Redlich-Peterson isotherm equations using correlation coefficients. Adsorption data were well described by the Langmuir model, although they could be modelled by the Freundlich and Redlich-Peterson model as well. The pseudo-first order and pseudo-second order kinetic models were applied to test the experimental data. It was concluded that the pseudo-second order kinetic model provided better correlation of the experimental data rather than the pseudo-first order model. The mass transfer model as intraparticle diffusion was applied to the experimental data to examine the mechanisms of rate controlling step. It was found that at the higher initial MB concentration, intraparticle diffusion is becoming significant controlling step. The thermodynamic constants of the adsorption process were also evaluated by using the Langmuir constants related to the equilibrium of adsorption at temperatures varied in the range 25-55 degrees C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app