JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis.

Sporadic amyotrophic lateral sclerosis (SALS) causes progressive muscle weakness because of the loss of motor neurons. SALS has been associated with exposure to environmental toxins, including pesticides and chemical warfare agents, many of which are organophosphates. The enzyme paraoxonase 1 (PON1) detoxifies organophosphates and the efficacy of this enzyme varies with polymorphisms in the PON1 gene. To determine if an impaired ability to break down organophosphates underlies some cases of SALS, we compared the frequencies of PON1 polymorphisms in SALS patients and controls and investigated gene-environment interactions with self-reported pesticide/herbicide exposure. The PON1 coding polymorphisms L55M, Q192R and I102V, and the promoter polymorphisms -909c>g, -832g>a, -162g>a and -108c>t, were genotyped in 143 SALS patients and 143 matched controls. Statistical comparisons were carried out at allele, genotype and haplotype levels. The PON1 promoter allele -108t, which reduces PON1 expression, was strongly associated with SALS. Overall, promoter haplotypes that decrease PON1 expression were associated with SALS, whereas haplotypes that increase expression were associated with controls. Coding polymorphisms did not correlate with SALS. Gene-environment interactions were identified at the allele level for some promoter SNPs and pesticide/herbicide exposure, but not at the genotype or haplotype level. In conclusion, some PON1 promoter polymorphisms may predispose to SALS, possibly by making motor neurons more susceptible to organophosphate-containing toxins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app