JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

[Transcriptional regulation of metabolic switching PDK4 gene under various physiological conditions].

Pyruvate dehydrogenase kinase 4 (PDK4) phosphorylates and inactivates the pyruvate dehydrogenase complex to respond to physiologic conditions. This response switches the energy source from glucose to fatty acids to maintain blood glucose levels. Transcription of the PDK4 gene is activated by fasting or by the administration of a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand in a tissue-specific manner. However, the two mechanisms to induce PDK4 mRNA as well as the relationship between the two have not been studied in detail. In this study, we show that the two mechanisms are independent, at least in the mouse skeletal muscle, and that estrogen-related receptor alpha (ERRalpha) is directly involved in the PPARalpha-independent transcriptional activation of the PDK4 gene with peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) as a specific partner. The latter conclusion is based on the following evidence: 1) Deletion and point mutation analyses of the cloned mouse PDK4 gene promoter sequence identified an exact possible ERRalpha-binding motif as the PGC-1alpha responsive element. 2) The overexpression of ERRalpha by cotransfection enhanced, and the knocking down of it by specific shRNAs diminished, the PGC-1alpha-dependent activation. 3) Specific binding of ERRalpha to the identified PGC-1alpha-responsive sequence of the mouse PDK4 promoter was confirmed in the electrophoresis mobility shift assay using anti-ERRalpha antibodies. These results suggest that PGC-1alpha plays an essential role not only in regulating the amounts of energy creating enzymes, but also at the step of metabolic switching with unevenly distributed tissue transcription factors such as ERRalpha in the skeletal muscle, thus harmonizing tissue-specific functions and energy metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app