JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Overexpression of cyclooxygenase-2 predisposes to podocyte injury.

Increased podocyte cyclooxygenase-2 (COX-2) expression is seen in rats after renal ablation and Thy-1 nephritis and in cultured murine podocytes in response to mechanical stress. For investigation of whether COX-2 overexpression plays a role in podocyte injury, transgenic B6/D2 mice in which COX-2 expression was driven by a nephrin promoter were established. Selective upregulation of COX-2 expression in podocytes of transgenic mouse kidneys was confirmed by immunoblotting and immunohistochemistry. Whether upregulation of podocyte-specific COX-2 expression enhanced sensitivity to the development of Adriamycin nephropathy was examined. Adriamycin administration induced dramatically more albuminuria and foot process effacement and reduced glomerular nephrin mRNA and immunoreactivity in transgenic mice compared with wild-type littermates. Adriamycin also markedly increased immunoreactive COX-2 expression in podocytes from transgenic mice compared with the wild-type mice. Reverse transcriptase-PCR indicated that this increase represented a stimulation of endogenous COX-2 mRNA expression rather than COX-2 mRNA driven by the nephrin promoter. Balb/C mice, which are susceptible to renal injury by Adriamycin, also increased podocyte COX-2 expression and reduced nephrin expression in response to administration of the drug. Long-term treatment with the COX-2-specific inhibitor SC58236 ameliorated the albuminuria that was induced by Adriamycin in the transgenic mice. SC58236 also reduced Adriamycin-induced foot process effacement in both the COX-2 transgenic mice and Balb/C mice. Therefore, overexpression of COX-2 may predispose podocytes to further injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app