Add like
Add dislike
Add to saved papers

Charge recombination versus charge separation in donor-bridge-acceptor systems.

Optimizing the ratio of the rates for charge separation (CS) over charge recombination (CR) is crucial to create long-lived charge-separated states. Mastering the factors that govern the electron transfer (ET) rates is essential when trying to achieve molecular-scale electronics, artificial photosynthesis, and also for the further development of solar cells. Much work has been put into the question of how the donor-acceptor distances and donor-bridge energy gaps affect the electronic coupling, V(DA), and thus the rates of ET. We present here a unique comparison on how these factors differently influence the rates for CS and CR in a porphyrin-based donor-bridge-acceptor model system. Our system contains three series, each of which focuses on a separate charge-transfer rate-determining factor, the donor-acceptor distance, the donor-bridge energy gap, and last, the influence of the electron acceptor on the rate for charge transfer. In these three series both CS and CR are governed by superexchange interactions which make a CR/CS comparative study ideal. We show here that the exponential distance dependence increases slightly for CR compared to that for CS as a result of the increased tunneling barrier height for this reaction, in accordance with the McConnell superexchange model. We also show that the dependence on the tunneling barrier height is different for CS and CR. This difference is highly dependent on the electron acceptor and thus cannot solely be explained by the differences in the frontier orbitals of the electron donor in these porphyrin systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app