Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions.

PURPOSE: Thrombin, a serine protease, breaks down the barrier integrity of corneal endothelial cells by phosphorylation of the regulatory light chain of myosin II (myosin light chain; MLC), which induces contractility of the actin cytoskeleton. This study was undertaken to investigate the effect of thrombin on gap junctional (GJIC) and paracrine (PIC) intercellular communication in cultured bovine corneal endothelial cells (BCECs).

METHODS: An intercellular Ca(2+) wave, a form of cell-cell communication, was elicited by applying a mechanical stimulus to a single cell in a confluent monolayer. Changes in [Ca(2+)](i) were imaged by fluorescence microscopy with a fluorescent calcium indicator, and the images were used to calculate the area reached by the Ca(2+) wave (active area). GJIC was assessed by fluorescence recovery after photobleaching (FRAP). Activity of hemichannels was assayed by lucifer yellow (LY) uptake and also by adenosine triphosphate (ATP) release by using the luciferin-luciferase technique.

RESULTS: RT-PCR showed transcripts for PAR-1 and -2 receptors, but not for PAR-4 receptors. Immunocytochemistry showed thrombin-sensitive PAR receptors as well as trypsin-sensitive PAR-2 receptors. Both thrombin and the selective PAR-1 agonist TRAP-6 reduced the active area of the Ca(2+) wave. These agents also reduced the fluorescence recovery in FRAP experiments. The effect of thrombin on the Ca(2+) wave was inhibited by a peptide antagonist of PAR-1, but not by a PAR-4 antagonist. Pretreatment with ML-7 (an MLCK inhibitor), Y-27632 (a Rho kinase inhibitor) or chelerythrine (a PKC inhibitor) prevented the effect of thrombin on the Ca(2+) wave. Activation of PAR-1 did not affect the Ca(2+) wave propagation in cells pretreated with Gap26, which blocks hemichannels. However, PAR-1 activation decreased the active area in cells pretreated with Gap27, which inhibits gap junctions. Thrombin abolished enhancement of the Ca(2+) wave propagation by ARL-67156 (inhibitor of ecto-ATPases). The effect of the PAR-1 agonists on the Ca(2+) wave was not detectable in cells pretreated with exogenous apyrases.

CONCLUSIONS: Thrombin inhibits intercellular Ca(2+) wave propagation in BCECs. This effect is due to activation of PAR-1 receptors and involves MLC phosphorylation by MLCK-, PKC- and Rho kinase-sensitive pathways. Thrombin mainly inhibits the ATP-mediated PIC pathway, and also reduces GJIC to a lesser extent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app