JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methylation and gene silencing of the Ras-related GTPase gene in lung and breast cancers.

BACKGROUND: RRAD, a small Ras-related GTPase, is highly expressed in human skeletal muscle, lung, and heart. Although loss of expression of RRAD in breast cancer cells has been reported and it may act as an oncogene, the mechanism of silencing is unknown.

METHODS: We examined (1) mRNA expression of RRAD in lung and breast cancer cell lines using RT-PCR and (2) methylation status of lung and breast cancers.

RESULTS: Loss of RRAD expression was found in 14 of 20 (70%) NSCLC cell lines, 11 of 11 (100%) SCLC cell lines, and 8 of 10 (80%) breast cancer cell lines; expression was not affected in normal bronchial and mammary epithelial cells. Treatment of 23 expression-negative cell lines with a demethylating agent restored expression in all cases. We developed a methylation-specific assay from the analysis of bisulfite sequencing of the 5' region of RRAD in expression-negative and positive cell lines, which resulted in good concordance between methylation and expression. Primary lung and breast cancers showed hypermethylation in 89 of 214 (42%) and 39 of 63 (62%) cases, respectively. RRAD hypermethylation correlated with smoking history and poorer prognosis in lung adenocarcinomas.

CONCLUSIONS: We conclude that epigenetic silencing of RRAD is a frequent event in lung and breast cancers, and analysis of it may provide novel opportunities for prognosis and therapy of these cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app