Add like
Add dislike
Add to saved papers

Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla.

Cervical spinal cord spectroscopy has the potential to add metabolic information to spinal cord MRI and improve the clinical evaluation and research investigation of spinal cord diseases, such as multiple sclerosis (MS) and intraspinal tumors. However, in vivo proton MR spectroscopy ((1)H-MRS) of the spinal cord is difficult to perform due to magnetic field inhomogeneities, physiological movements, and the size of the anatomical region of interest (ROI). For these reasons, few spinal cord (1)H-MRS studies have been undertaken and two preliminary studies on a 3T system were only recently presented as abstracts. In this work we demonstrate the feasibility of cervical spinal cord quantitative (1)H-MRS on a clinical 3T system, propose a study protocol, and report quantification results obtained from healthy volunteers. The main metabolite concentration ratios obtained in 10 healthy subjects, as provided by LCModel, were as follows: total N-acetyl aspartate/creatine (tNAA/Cr) 1.4 +/- 0.3, choline/creatine (Cho/Cr) 0.5 +/- 0.1, and myoinositol/creatine (mI/Cr) 1.7 +/- 0.2. A significant difference was found between spinal cord tNAA, Cr, Cho, and mI concentration ratios and brainstem concentrations previously acquired on the same system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app