JOURNAL ARTICLE

Do short international layovers allow sufficient opportunity for pilots to recover?

Nicole Lamond, Renée M Petrilli, Drew Dawson, Gregory D Roach
Chronobiology International 2006, 23 (6): 1285-94
17190713
For Australian pilots, short layovers (<40 h) are a feature of many international patterns. However, anecdotal reports suggest that flight crew members find patterns with short slips more fatiguing than those with a longer international layover, as they restrict the opportunity to obtain sufficient sleep. The current study aimed to determine whether pilots operating international patterns with short layovers have sufficient opportunity to recover prior to the inbound flight. Nineteen international pilots (ten captains, nine first officers) operating a direct return pattern from Australia to Los Angeles (LAX) with a short (n = 9) 9+/-0.8 h (mean+/-S.D) or long (n = 10) 62.2+/-0.9 h LAX layover wore an activity monitor and kept a sleep/duty diary during the pattern. Immediately before and after each flight, pilots completed a 5 min PalmPilot-based psychomotor vigilance task (Palm-PVT). Flights were of comparable duration outbound (3.5+/-0.6 h) and inbound (14.3+/-0.6 h) and timing. The amount of sleep obtained in-flight did not significantly vary as a function of layover length. However, pilots obtained significantly more sleep during the inbound (3.7+/-0.8 h) than the outbound flight (2.2+/-0.8 h). Pilots with the shorter layover obtained significantly less sleep in total during layover (14.0+/-2.7 h vs. 19.6+/-2.5), due to significantly fewer sleep periods (3.0+/-0.7 vs. 4.0+/-0.9). However, neither mean sleep duration nor the sleep obtained in the 24 h prior to the inbound flight significantly differed as a function of layover length. Response speed significantly varied across the pattern, and a significant interaction was also observed. For pilots with a short layover, response speed was significantly slower at the end of both the outbound and inbound flight, and prior to the inbound flight (i.e., at the end of layover), relative to response speed at the start of the pattern (pre-trip). Similarly, response speed for the longer layover was slower at the end of the outbound flight compared to pre-trip (approaching significance, p = 0.073). However, response speed at the beginning of the inbound flight was significantly faster than pre-trip and did not significantly differ from pre-trip at the end of the inbound flight. The data suggest that short slips (<40 h) do not allow pilots the opportunity to obtain sufficient sleep to reverse the effects of fatigue accumulated during the outbound flight. As a result, their response speed prior to the inbound flight is substantially slower than the response speed of flight crew with a longer layover.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17190713
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"