JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review.

Toxicology 2007 April 21
Currently fielded treatments for nerve agent intoxication promote survival, but do not afford complete protection against either nerve agent-induced motor and cognitive deficits or neuronal pathology. The use of human plasma-derived butyrylcholinesterase (HuBuChE) to neutralize the toxic effects of nerve agents in vivo has been shown to both aid survival and protect against decreased cognitive function after nerve agent exposure. Recently, a commercially produced recombinant form of human butyrylcholinesterase (r-HuBuChE; PharmAthene Inc.) expressed in the milk of transgenic goats has become available. This material is biochemically similar to plasma-derived HuBuChE in in vitro assays. The pharmacokinetic characteristics of a polyethylene glycol coated (pegylated) form of r-HuBuChE were determined in guinea pigs; the enzyme was rapidly bioavailable with a half-life (t(1/2)) and pharmacokinetic profile that resembled that of plasma-derived huBuChE. Guinea pigs were injected with 140mg/kg (i.m.) of pegylated r-HuBuChE 18h prior to exposure (sc) to 5.5xLD(50) VX or soman. VX and soman were administered in a series of three injections of 1.5xLD(50), 2.0xLD(50), and 2.0xLD(50), respectively, with injections separated by 2h. Pretreatment with pegylated r-HuBuChE provided 100% survival against multiple lethal doses of VX and soman. Guinea pigs displayed no signs of nerve agent toxicity following exposure. Assessments of motor activity, coordination, and acquisition of spatial memory were performed for 2 weeks following nerve agent exposure. There were no measurable decreases in motor or cognitive function during this period. In contrast, animals receiving 1.5xLD(50) challenges of soman or VX and treated with standard atropine, 2-PAM, and diazepam therapy showed 50 and 100% survival, respectively, but exhibited marked decrements in motor function and, in the case of GD, impaired spatial memory acquisition. The advances in this field have resulted in the decision to select both the plasma-derived and the recombinant form of BuChE for advanced development and transition to clinical trials. Efforts have now been expanded to identify a catalytic protein capable of not only binding, but also rapidly hydrolyzing the standard threat nerve agents. Recent work has focused on paraoxonase-1 (PON1), a naturally occurring human serum enzyme with the capacity to catalyze the hydrolysis of nerve agents, albeit too slowly to afford dramatic protection. Using rational design, several amino acids involved in substrate binding have been identified and site-directed mutations have revealed that residue H115 plays an important role in binding. In addition, the stereospecificity of PON1 for the catalytic hydrolysis of soman has been examined. The enzyme exhibits a slight stereospecificity for the C+P+ isomer of soman, which is due more to preferential binding than to selective hydrolysis of this isomer. The results suggest that it may be possible to engineer a mutant form of PON1 with enhanced activity and stereospecificity for the most toxic nerve agent isoforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app