JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat.

Brain Research 2007 Februrary 10
Diphenyleneiodonium (DPI) is an inhibitor of the free radical producing NAD(P)H-oxidase. We tested whether DPI shows neuroprotective properties after focal cerebral ischemia and we used dimethylsulfoxide (DMSO), a nonspecific free radical scavenger, as a solvent. In male Wistar rats middle cerebral artery occlusion (1.5 h) and subsequent reperfusion (48 h) (MCAO/R) was induced with the filament model. Immediately after reperfusion the animals received either 0.25 ml normal saline, DMSO, or a combination of DMSO and DPI; each group consisted of 10 animals. MRI was performed at different times after reperfusion. Gelatine zymography of brain tissue for MMP-2 and MMP-9 was performed. The infarct sizes and BBB damage showed a significant difference between controls and the DPI/DMSO group for almost all points in time in all sequences. The activity of MMP-2 and MMP-9 was significantly reduced by DPI/DMSO but not by DMSO alone. DMSO treatment alone resulted in a protective effect with reduced lesion sizes measured by MRI at selected points of time, consistent with its known free radical scavenger effect. The combination of DMSO with DPI partly augmented this effect, presumably due to the additional inhibition of MMP-2 and MMP-9 by DPI. Moreover, the neurological outcome in both therapeutic groups was improved compared to controls with a significant difference between the therapeutic groups in favour of DPI and DMSO. The combination of DPI and DMSO reduced the activity of MMP-2 and MMP-9, attenuated the postischemic blood-brain barrier damage and improved neurological outcome. This was most likely due to reduced oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app