Add like
Add dislike
Add to saved papers

Photophysical properties of hydroxylated amphiphilic poly(p-phenylene)s.

A homologous series of polyhydroxylated poly(p-phenylene)s with different alkoxy groups (C6PPPOH, C12PPPOH, and C18PPPOH) were synthesized with use of the Suzuki polycondensation reaction. Comparative studies of the structure correlation between their photophysical properties and film morphology is described. The absorption and emission spectra of polymers in solution and thin films showed similar features indicating that the electronic properties in solution were retained in the film state. Compared to the polymer with the short alkoxy chains (C6PPPOH), the polymers with long alkoxy groups (C12PPPOH and C18PPPOH) showed improved film forming properties with continuous and smooth film morphology. The absorption properties of the C12PPPOH showed an enhanced effective conjugation length and high quantum yield implying planarization of the backbone through alkoxy chain packing (C12H25O-) and potential hydrogen bonds. No overlap in the absorption and emission spectra was observed, which indicated minimized excimer formation or excitation energy transfer in the films. Time-resolved fluorescence measurements showed that the decay times increased from 43 ps (C6PPPOH) to 78 ps (C12PPPOH) and 99 ps (C18PPPOH). Electrochemical studies were performed for all polymers and the observed oxidation potential for C6PPPOH was higher than that of C12PPPOH and C18PPPOH. In addition, the C12PPPOH has the lowest band gap of DeltaE = 2.59 eV when compared to the 3.1 (C6PPPOH) and 2.61 eV (C18PPPOH) gaps. The optical band gaps estimated from the absorption onset of the polymers are significantly higher than those obtained from electrochemical data. C12PPPOH was chosen for investigating the charge carrier mobility by the time-of-flight (TOF) technique. The observed results also showed negative field dependent values of the drift mobility for the polymer C12PPPOH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app