Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells.

Oncogene 2007 May 25
DDB2, a gene mutated in XPE patients, is involved in global genomic repair especially the repair of cyclobutane pyrimidine dimers (CPDs), and is regulated by p53 in human cells. We show that DDB2 is expressed in mouse tissues and demonstrate, using primary mouse epithelial cells, that mouse DDB2 is regulated by E2F transcription factors. Retinoblastoma (Rb), a tumor suppressor critical for the control of cell cycle progression, regulates E2F activity. Using Cre-Lox technology to delete Rb in primary mouse hepatocytes, we show that DDB2 gene expression increases, leading to elevated DDB2 protein levels. Furthermore, we show that endogenous E2F1 and E2F3 bind to DDB2 promoter and that treatment with E2F1-antisense or E2F1-small interfering RNA (siRNA) decreases DDB2 transcription, demonstrating that E2F1 is a transcriptional regulator for DDB2. This has consequences for global genomic repair: in Rb-null cells, where E2F activity is elevated, global DNA repair is increased and removal of CPDs is more efficient than in wild-type cells. Treatment with DDB2-siRNA decreases DDB2 expression and abolishes the repair phenotype of Rb-null cells. In summary, these results identify a new regulatory pathway for DDB2 by E2F, which does not require but is potentiated by p53, and demonstrate that DDB2 is involved in global repair in mouse epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app